Respuesta :
[tex]\qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}} ~\hspace{6em} \stackrel{\textit{constant of variation}}{y=\cfrac{\stackrel{\downarrow }{k}}{x}~\hfill } \\\\ \textit{\underline{x} varies inversely with }\underline{z^5} ~\hspace{5.5em} \stackrel{\textit{constant of variation}}{x=\cfrac{\stackrel{\downarrow }{k}}{z^5}~\hfill } \\\\[-0.35em] \rule{34em}{0.25pt}[/tex]
[tex]\stackrel{\textit{"F" inversely proportional to }\sqrt{g}}{F=\cfrac{k}{\sqrt{g}}}\qquad \textit{we also know that} \begin{cases} F=18\\ g=9 \end{cases} \\\\\\ 18=\cfrac{k}{\sqrt{9}}\implies 18=\cfrac{k}{3}\implies 54=k~\hfill\boxed{ F=\cfrac{54}{\sqrt{g}}} \\\\\\ \textit{when g = 36, what is "F"?}\qquad F=\cfrac{54}{\sqrt{36}}\implies F=\cfrac{54}{6}\implies F=9[/tex]
Answer:
f = 9
Step-by-step explanation:
f = k/square root of g (k is the constant) so 18 = k/square root of 9.
We can rearrange this to find k, so 18*square root of 9 = k
Consequently, k = 54
We can put k in our equation to now find f. f = 54/square root of 36
Therefore, f is 9