Respuesta :
Applying the distributive property, the simplified product is given as: [tex]24x^3\sqrt{5x} - 4x^2\sqrt{10x}[/tex].
What is a Simplified Product?
Simplified product is the result you get, in the simplest form, when you multiply two expressions together.
Given:
2√8x³(3√10x^4 - x√5x²)
Open the bracket by applying the distributive property
[tex]2\sqrt{8x^3}(3\sqrt{10x^4}) - 2\sqrt{8x^3}(x\sqrt{5x^2})\\\\6\sqrt{80x^3 \times x^4} - 2x\sqrt{40x^3 \times x^2}\\\\[/tex]
Simplify
[tex]24x^3\sqrt{5x} - 4x^2\sqrt{10x}[/tex]
Thus, applying the distributive property, the simplified product is given as: [tex]24x^3\sqrt{5x} - 4x^2\sqrt{10x}[/tex]
Learn more about simplified product on:
https://brainly.com/question/2548064