What is the following simplified product? Assume x20
2V8x3 3 V 10x4 – x
(
10x4-xV542
0 24x3 /5x - 4x2 /10x
O 24x2 V5x - 4x2 10x
O 24x3 15-4x2 /10x
0 24x3 5x +4x° 10x

Respuesta :

Answer:

d

Step-by-step explanation:

Applying the distributive property, the simplified product is given as: [tex]24x^3\sqrt{5x} - 4x^2\sqrt{10x}[/tex].

What is a Simplified Product?

Simplified product is the result you get, in the simplest form, when you multiply two expressions together.

Given:

2√8x³(3√10x^4 - x√5x²)

Open the bracket by applying the distributive property

[tex]2\sqrt{8x^3}(3\sqrt{10x^4}) - 2\sqrt{8x^3}(x\sqrt{5x^2})\\\\6\sqrt{80x^3 \times x^4} - 2x\sqrt{40x^3 \times x^2}\\\\[/tex]

Simplify

[tex]24x^3\sqrt{5x} - 4x^2\sqrt{10x}[/tex]

Thus, applying the distributive property, the simplified product is given as: [tex]24x^3\sqrt{5x} - 4x^2\sqrt{10x}[/tex]

Learn more about simplified product on:

https://brainly.com/question/2548064