Answer:
[tex]y-2=\displaystyle-\frac{6}{7}(x-1)[/tex]
or
[tex]y=\displaystyle-\frac{6}{7}x+\frac{20}{7}[/tex]
Step-by-step explanation:
Hi there!
Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where m is the slope and [tex](x_1,y_1)[/tex] is a point that falls on the line
Plug in the slope, -6/7, and the given point, (1,2):
[tex]y-2=\displaystyle-\frac{6}{7}(x-1)[/tex]
To write the equation in slope-intercept form, isolate y:
[tex]y-2=\displaystyle-\frac{6}{7}(x-1)\\\\y-2=\displaystyle-\frac{6}{7}x+\frac{6}{7}\\\\y=\displaystyle-\frac{6}{7}x+\frac{6}{7}+2\\\\y=\displaystyle-\frac{6}{7}x+\frac{20}{7}[/tex]
I hope this helps!