Respuesta :

Answer:

y = -x - 8

Step-by-step explanation:

Midpoint of the line:

x = (x1 + x2)/2 = (-8 + -4)/2 = -12/2 = -6

y = (y1 + y2)/2 = (-5 + 1)/2 = -4/2 = -2

so midpoint is (-6,-2)

Slope of the line: Slope m = (y2-y1)/(x2-x1)

m = (-1 - -5)/(-4 - -8) = (-1 + 5)/(-4 + 8) = 4/4 = 1

Perpendicular lines have slopes that are negative reciprocals of one another

so slope of the perpendicular line is -1/1 is -1

y = mx + b

y = -x + b

Using (-6,-2)

-2 = -(-6) + b

-2 = 6 + b

b = -8

so y = -x - 8

Answer:

[tex]y=\frac{3}{2}x-3[/tex]

Step-by-step explanation:

Step 1: Perpendicular bisector

To find the perpendicular bisector of the segment, apply the midpoint formula:

[tex]\bigg(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\bigg)[/tex]

Points: {(-8, -5, (-4, 1)}

x₁ = -8      first x value

x₂ = -4     second x value

y₁ = -5     first y value

y₂ = 1      second y value

Plug the points into the formula:

[tex]\bigg(\frac{-8+(-4)}{2}, \frac{-5+1}{2}\bigg)[/tex]

Solve:

[tex]\bigg(\frac{-8+(-4)}{2}, \frac{-5+1}{2}\bigg)[/tex]

[tex]=\bigg(\frac{-12}{2}, \frac{-4}{2}\bigg)[/tex]

[tex]=(-6,-2)[/tex]

The midpoint is (-6, -2).

Step 2: Slope

To find the slope (m), apply the formula:

[tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

(point location is the same as previous step)

Plug the points into the formula; then solve:

[tex]\frac{1-(-5)}{-4(-8)}[/tex]

[tex]=\frac{6}{4}[/tex]

[tex]m=\frac{3}{2}[/tex]

The slope is 3/2

Step 3: Solving for b

[tex]y = mx+b[/tex]

[tex]-6=\frac{3}{2}(-2)+b[/tex]

[tex]\frac{3}{2}\left(-2\right)+b=-6[/tex]

[tex]-\frac{3}{2}\cdot \:2+b=-6[/tex]

[tex]-3+b=-6[/tex]

[tex]-3+b+3=-6+3[/tex]

[tex]b=-3[/tex]

Therefore, the equation is [tex]\bold{-6=\frac{3}{2}(-2)-3}[/tex]