Multiply and simplify this equation.

Answer:
[tex]-3\sqrt[3]{4}y^{\frac{5}{3}}\sqrt[3]{x^2}\sqrt[3]{x}[/tex]
Step-by-step explanation:
[tex]\sqrt[3]{-9x^2y^4} \cdot \sqrt[3]{12xy}[/tex]
[tex]=\sqrt[3]{9}\sqrt[3]{x^2}\left(-y\sqrt[3]{y}\right)\sqrt[3]{12xy}[/tex]
[tex]=\sqrt[3]{9}\sqrt[3]{x^2}\left(-y\sqrt[3]{y}\right)\sqrt[3]{12}\sqrt[3]{x}\sqrt[3]{y}[/tex]
[tex]=\sqrt[3]{108}\sqrt[3]{x^2}\left(-y\sqrt[3]{y}\right)\sqrt[3]{x}\sqrt[3]{y}[/tex]
[tex]=\sqrt[3]{4}\cdot \:3\sqrt[3]{x^2}\left(-y\sqrt[3]{y}\right)\sqrt[3]{x}\sqrt[3]{y}[/tex]
[tex]=-\sqrt[3]{4}\cdot \:3\sqrt[3]{x^2}y\sqrt[3]{y}\sqrt[3]{x}\sqrt[3]{y}[/tex]
[tex]=-\sqrt[3]{4}\cdot \:3\sqrt[3]{x^2}y\left(\sqrt[3]{y}\right)^2\sqrt[3]{x}[/tex]
[tex]=-\sqrt[3]{4}\cdot \:3\sqrt[3]{x^2}y^{\frac{5}{3}}\sqrt[3]{x}[/tex]
[tex]=-3\sqrt[3]{4}y^{\frac{5}{3}}\sqrt[3]{x^2}\sqrt[3]{x}[/tex]