Answer:
Hey There!
Let's solve...
We have
[tex] \angle \: odb = \angle \: cao \\ \\ \angle \: dbo = \angle \: aco \\ \\ [/tex]
Using AA Criterion of Similarity we have
[tex] \triangle \: obd \: - \triangle \: oac \\ \\ [/tex]
This implies that
[tex] \frac{od}{ob} = \frac{oa}{oc} \to \frac{6}{3 + 2 } \: or \: \frac{6}{5} = \frac{oa}{oc} \\ \\ \to \: oa = \frac{6}{5} oc [/tex]
Now,
[tex]ab = ao - bo \\ \\ = \frac{6}{5}oc - bo = \frac{6}{5}(od - oc) \\ - bo \\ \\ = \frac{6}{5}(6 + 4cm) - 5cm \\ \\ = 7cm [/tex]
Note:Every letters should be in capital, i don't have any option here so i can't do.
I hope it is helpful to you...
Cheers!_________