Could anyone help with this question

Answer:
k = 96
Step-by-step explanation:
[tex]f(x) = x\sqrt{(6 -x^{2}) } \\\\ = x(6 - x^{2})^{\frac{1}{2} }[/tex]
[tex]V = \int\limits^2_ {-2}\pi (f(x))^{2} \, dx \\\\ = \pi \int\limits^2_ {-2} (f(x))^{2} \, dx \\\\ = \pi \int\limits^2_ {-2} (x(6 - x^{2})^{\frac{1}{2} })^{2} \, dx \\\\ = \pi \int\limits^2_ {-2} x^{2}(6 - x^{2}) \, dx \\\\ = \pi \int\limits^2_{-2} 6x^{2} - x^{4} \, dx \\\\ = \pi [\frac{6x^{3} }{3} -\frac{x^{5}}{5} ]\limits^2_{-2} \\\\ = \pi [(2(2)^{3}-\frac{(2)^{5}}{5})-(2(-2)^{3} - \frac{(-2)^{-5}}{5}) ] \\\\ = \pi[(16 - \frac{32}{5}) - (-16-(-\frac{32}{5}))] \\\\ = \pi[\frac{48}{5} - (-\frac{48}{5})][/tex]
= π[⁴⁸/₅ + ⁴⁸/₅]
= π(⁹⁶/₅)