Respuesta :

Answer:

  • x = 6

Step-by-step explanation:

The median is the average of the bases:

  • 15 = 1/2(x + 1 + 3x + 5)
  • 30 = 4x + 6
  • 4x = 30 - 6
  • 4x = 24
  • x = 6

Answer:

The value of x is 6 .

Step-by-step explanation:

Solution :

Here's the required formula of median of trapezoid :

[tex]{\implies{\pmb{\sf{Median=\dfrac{Base_1 + Base_2}{2}}}}}[/tex]

Where :

  • ➝ Median [tex]\rm\overline{EF}[/tex] = 15
  • ➝ Base₁ (AB) = x + 1
  • ➝ Base₂ (CD) = 3x + 5

Substituting all the given values in the formula to find the value of x :

[tex]\begin{gathered}\qquad{\longrightarrow{\sf{Median =\dfrac{Base_1 + Base_2}{2}}}}\\\\\qquad{\longrightarrow{\sf{\overline{EF} =\dfrac{Base_1 + Base_2}{2}}}}\\\\\qquad{\longrightarrow{\sf{15 =\dfrac{(x +1) + (3x + 5)}{2}}}}\\\\\qquad{\longrightarrow{\sf{15 =\dfrac{(x +3x) + (1 + 5)}{2}}}}\\\\\quad{\longrightarrow{\sf{15 =\dfrac{(4x) + (6)}{2}}}}\\\\ \quad{\longrightarrow{\sf{15 \times 2 = 4x + 6}}}\\\\\quad{\longrightarrow{\sf{30 = 4x + 6}}}\\\\\quad{\longrightarrow{\sf{4x = 30 - 6}}}\\\\\quad{\longrightarrow{\sf{4x =24}}}\\\\\quad{\longrightarrow{\sf{x = \dfrac{24}{4}}}}\\\\\quad{\longrightarrow{\sf{x =6}}}\\\\\quad{\star{\underline{\boxed{\sf{\purple{x =6}}}}}}\end{gathered}[/tex]

Hence, the value of x is 6.

[tex]\rule{300}{2.5}[/tex]