Rain which falls onto a flat rectangular surface of length 6 m and width 4 m is collected in a cylinder of internal radius 20 cm. What is the depth of water in the cylinder after a storm in which 1 cm of rain fell? ​

Respuesta :

[tex]\large\pink{\sf{Given:-}}[/tex]

  • Length = 6m
  • Width = 4m
  • Height = 1cm
  • Internal Radius of cylinder = 20 cm

[tex]\large\purple{\sf{Solution:-}}[/tex]

[tex] \tt \: volume = length \times width \times height[/tex]

[tex] \tt \: volume = 6 \times 4 \times 1[/tex]

[tex] \tt \: volume = 24m ^{3} [/tex]

Volume of water in cylindrical vessel;

[tex] \sf\pi \: r ^{2} h[/tex]

  • r = 20
  • h = ?
  • π = 22/7

[tex] \sf \: h = \frac{volume}{\pi r^{2} } [/tex]

[tex] \sf \: h = \frac{24 \times 7}{22 \times 20 \times 20} [/tex]

[tex] \sf \: h = 0.190 \: cm[/tex]

Therefore, The height of cylinder will be 0.190 I'm approximately...

Answer:

  • 1.91 m

Step-by-step explanation:

The volume of water collected:

  • V = lwh
  • V = 6 m * 4m * 1 cm = 600* 400* 1 cm³ = 240000 cm³

Volume of cylinder:

  • V = πr²h

We have the values of V and r, find the value of h:

  • h = V/πr²
  • h = 240000 /(3.14*20²) = 191 cm = 1.91 m