Respuesta :
[tex]\large\pink{\sf{Given:-}}[/tex]
- Length = 6m
- Width = 4m
- Height = 1cm
- Internal Radius of cylinder = 20 cm
[tex]\large\purple{\sf{Solution:-}}[/tex]
[tex] \tt \: volume = length \times width \times height[/tex]
[tex] \tt \: volume = 6 \times 4 \times 1[/tex]
[tex] \tt \: volume = 24m ^{3} [/tex]
Volume of water in cylindrical vessel;
[tex] \sf\pi \: r ^{2} h[/tex]
- r = 20
- h = ?
- π = 22/7
[tex] \sf \: h = \frac{volume}{\pi r^{2} } [/tex]
[tex] \sf \: h = \frac{24 \times 7}{22 \times 20 \times 20} [/tex]
[tex] \sf \: h = 0.190 \: cm[/tex]
Therefore, The height of cylinder will be 0.190 I'm approximately...
Answer:
- 1.91 m
Step-by-step explanation:
The volume of water collected:
- V = lwh
- V = 6 m * 4m * 1 cm = 600* 400* 1 cm³ = 240000 cm³
Volume of cylinder:
- V = πr²h
We have the values of V and r, find the value of h:
- h = V/πr²
- h = 240000 /(3.14*20²) = 191 cm = 1.91 m