outside the function
g(x) = A . f(x - C) + D
inside the function
1. Use coordinate notation to describe how each point (x, y) on
the graph of f(x) becomes a point on the graph of g(x).

Respuesta :

The coordinate notation that describes the function transformation is:

[tex](x,y) \to (A(x - C)+D, y)[/tex]

The function notation is given as:

[tex]g(x) = A\cdot f(x - C) + D[/tex]

Function transformation

This involves changing the position and form of a function in a coordinate plane

To represent the above transformation using the coordinate notation, we start by shifting the function f(x) C units right.

So, we have:

[tex](x,y) \to (x - C, y)[/tex]

Next, we stretch the resulting function by factor A.

So, we have:

[tex](x,y) \to (A(x - C), y)[/tex]

Lastly, we shift the resulting function up by D units

[tex](x,y) \to (A(x - C)+D, y)[/tex]

Hence, the coordinate notation that describes the function transformation is:

[tex](x,y) \to (A(x - C)+D, y)[/tex]

Read more about function transformation at:

https://brainly.com/question/1548871