Respuesta :

The equation of the graphed circle is [tex](x - 5)^2 + (y - 2)^2 =25[/tex]

The given parameters are:

  • Center: (a,b) = (5,2)
  • Point: (x,y) = (9,5)

Radius

Start by calculating the radius of the circle using the following distance formula

[tex]r = \sqrt{(x -a)^2 + (y - b)^2}[/tex]

So, we have:

[tex]r = \sqrt{(9 -5)^2 + (5 - 2)^2}[/tex]

[tex]r = \sqrt{25}[/tex]

Square both sides of the equation

[tex]r^2 = 25[/tex]

Circle Equation

The equation of the circle is then calculated using:

[tex](x - a)^2 + (y - b)^2 = r^2[/tex]

Substitute values for (a,b)

[tex](x - 5)^2 + (y - 2)^2 = r^2[/tex]

Also, substitute 25 for r^2

[tex](x - 5)^2 + (y - 2)^2 =25[/tex]

Hence, the equation of the graphed circle is [tex](x - 5)^2 + (y - 2)^2 =25[/tex]

Read more about circle equations at:

https://brainly.com/question/1559324