Respuesta :

Answer:

  • See below

Step-by-step explanation:

Multiply and simplify:

  • (x - 1)(x + 2)(x + 3) =
  • (x² + 2x - x -2)(x + 3) =
  • (x² + x - 2)(x + 3) =
  • x³ + 3x² + x² + 3x - 2x - 6 =
  • x³ + 4x² + x - 6

From the final polynomial we can see that:

  • a = 1, b = 4, c = 1 and d = - 6

So all the coefficients are positive but the constant d is negative

[tex]\\ \sf\longmapsto (x-1)(x+2)(x+3)[/tex]

[tex]\\ \sf\longmapsto (x-1)\left\{(x+2)(x+3)\right\}[/tex]

[tex]\\ \sf\longmapsto (x-1)(x^2+5x+6)[/tex]

[tex]\\ \sf\longmapsto x(x^2+5x+6)-1(x^2+5x+6)[/tex]

[tex]\\ \sf\longmapsto x^3+5x^2+6x-x^2-5x-6[/tex]

[tex]\\ \sf\longmapsto x^3+4x^2+x-6[/tex]

  • a=1
  • b=4
  • c=1
  • d=-6