The name of the quadrilateral ACBD is given by the relationship between
the diagonals Anna draws and their properties.
Correct response:
Given parameters;
The two line segments Anna draws = [tex]\overline{AB}[/tex] and [tex]\overline{CD}[/tex]
[tex]\overline{AB}[/tex] ≅ [tex]\mathbf{\overline{CD}}[/tex]
[tex]\overline{AB}[/tex] ⊥ [tex]\mathbf{\overline{CD}}[/tex]
[tex]\overline{AB}[/tex] bisects [tex]\mathbf{\overline{CD}}[/tex]
[tex]\overline{CD}[/tex] bisects [tex]\mathbf{\overline{AB}}[/tex]
Therefore;
According to perpendicular bisector theorem, the lengths of the sides of
the quadrilateral ACBD are equal.
[tex]\mathbf{\overline {AC}}[/tex] = [tex]\overline{CB}[/tex] = [tex]\overline{BD}[/tex] = [tex]\overline{AD}[/tex]
Learn more about the properties of a square here:
https://brainly.com/question/1851850