[tex]\huge \bf༆ Answer ༄[/tex]
Let's solve ~
According to formula, the coordinates of Centroid of a triangle are ;
[tex] \sf x = \dfrac{x_1 + x_2 + x_3 }{3} [/tex]
[tex] \sf y = \dfrac{y_1 + y_2 + y_3 }{3} [/tex]
So, plug the coordinates of its vertices in the formula to find the required solution !
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:x = \dfrac{6 + ( - 3) + 3}{3} [/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:y = \dfrac{2+ 4 + (- 9) }{3} [/tex]
Further solving ~
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:x = \dfrac{6}{3} [/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:y = \dfrac{ - 3}{3} [/tex]
Therefore, the required coordinates are ~
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:x = 2[/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:y = - 1[/tex]
Correct choice is ;
[tex]\overbrace{ \underbrace{\underline{ \boxed{ \sf (2 ,-1)}}}}[/tex]