Respuesta :

  • x=30

The relationship given

[tex]\\ \sf\longmapsto y\propto x^2[/tex]

[tex]\\ \sf\longmapsto y=kx^2[/tex]

Now

  • When y is 2 x is 4(2^2=2)
  • y_1=2
  • x_1=4
  • x_2=30
  • y_2=?

Putting direct variation rule

[tex]\\ \sf\longmapsto x_1y_2=x_2y_1[/tex]

[tex]\\ \sf\longmapsto 4y_2=30(2)[/tex]

[tex]\\ \sf\longmapsto 4y_2=60[/tex]

[tex]\\ \sf\longmapsto y_2=15[/tex]

The variation equation when y varies directly as the square of x is y = kx².

The value of y when x = 30 is 900k.

Definition and types of variation:

Variation establish relationship between variable. Types of variation includes

  • Direct variation
  • Inverse variation
  • Joint variation
  • Combined variation

y varies directly as the square of x , Therefore,

  • y α x²
  • y = kx²

where

k = constant of proportionality

Solve for y when x = 30.

Therefore,

y = kx²

y = 30²k

y = 900k

learn more on variation here:https://brainly.com/question/13977805?referrer=searchResults