Respuesta :

Answer:

[tex]\huge\boxed{\sf <x = 24\°}[/tex]

Step-by-step explanation:

∠x and 156° are supplementary i.e. angles on a straight line that add up to 180 degrees.

So,

∠x + 156 = 180

Subtract 156 to both sides

∠x = 180 - 156

∠x = 24°

[tex]\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807

Answer:

[tex]\boxed{\sf x=24\°}[/tex]

Step-by-step explanation:

From the given diagram, we can see that ∠BOC and ∠AOB are supplementary angles.

Therefore, [tex]\sf m=\angle BOC+m\angle AOB=180\°[/tex]

[tex]\sf m=\angle BOC+m\angle AOB=180\°[/tex]

[tex]\sf x+156=180\°[/tex]

Subtract 156 from both sides:

[tex]\sf x+156-156=180-156[/tex]

[tex]\sf x=24\°[/tex]

__________________________________