[tex]\huge \bf༆ Answer ༄[/tex]
Let's solve ~
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \: {x}^{2} + x - 20[/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \: {x}^{2} + 5x - 4x - 20[/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:x(x + 5) - 4(x + 5)[/tex]
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:(x + 5)(x - 4)[/tex]
It's factorized now ~ And if you want to find the zeros then equate the expression with 0.
And you will get ;
[tex]{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf \:x = - 5 \: \: and \: \: 4[/tex]