Respuesta :

[tex]\huge \bf༆ Answer ༄[/tex]

Let's solve ~

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: {x}^{2} + x - 20[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: {x}^{2} + 5x - 4x - 20[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x(x + 5) - 4(x + 5)[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:(x + 5)(x - 4)[/tex]

It's factorized now ~ And if you want to find the zeros then equate the expression with 0.

And you will get ;

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x = - 5 \: \: and \: \: 4[/tex]