Respuesta :

Answer:

[tex]\boxed{\sf x=-2}[/tex]

[tex]\boxed{\sf y=-4}[/tex]

Step-by-step explanation:

First, Let's  solve for x in -2x+2y=-4:

[tex]\sf -2x+2y=-4[/tex]

Subtract 2y from both sides:

[tex]\sf -2x+2y-2y=-4-2y[/tex]

[tex]\sf -2x=-4-2y[/tex]

Divide both sides by -2:

[tex]\sf \cfrac{-2x}{-2}=-\cfrac{4}{-2}-\cfrac{2y}{-2}[/tex]

[tex]\bold{ x=y+2}[/tex]

Now, we'll substitute x=y+2 to 3x+3y=-18:

[tex]\sf 3x+3y=-18[/tex]

→ let x=2+y

[tex]\sf 3\bold{(2+y)}+3y=-18[/tex]

Simplify:

[tex]\sf 6+6y=-18[/tex]

Now, let's solve for y in 6+6y=-18

[tex]\sf 6+6y=-18[/tex]

Subtract 6 from both sides:

[tex]\sf 6+6y-6=-18-6[/tex]

[tex]\sf 6y=-24[/tex]

Divide both sides by 6:

[tex]\sf \cfrac{6y}{6}=\cfrac{-24}{6}[/tex]

[tex]\bold{ y=-4}[/tex]

Now, substitute y=-4 into x=2+y:

[tex]\sf x=2+y[/tex]

→ let y = -4

[tex]\sf x=2+\bold{-4}[/tex]

[tex]\bold{x=-2}[/tex]

Therefore, x=-2 and y=-4.

_____________________________________