Respuesta :

Answer:

[tex]\huge\boxed{\sf x = -\frac{10y+15}{53}}[/tex]

Step-by-step explanation:

17x - 5(12x - 2y) = 5(4y + 3 + 2x)

Distribute

17x - 60x + 10y = 20y + 15 + 10x

Combine like terms

-43x + 10y = 20y + 15 + 10x

Subtract 10x to both sides

-43x + 10y - 10x = 20y + 15

-53x + 10y = 20y + 15

Subtract 10y to both sides

-53x = 20y + 15 - 10y

-53x = 10y + 15

Divide both sides by -53

[tex]\boxed{x = -\frac{10y+15}{53} }[/tex]

[tex]\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807

Answer:

  • The solution to the equation is [tex]\frac{10y+15}{-53}[/tex].

Work:

  • 17x - 5(12x - 2y) = 5(4y + 3 + 2x)
  • => 17x - 60x + 10y = 20y + 15 + 10x
  • => 7x - 60x + 10y = 20y + 15
  • => -53x + 10y = 20y + 15
  • => -53x = 10y + 15
  • => x = [tex]\frac{10y+15}{-53}[/tex]

Hence, the solution to the equation is [tex]\frac{10y+15}{-53}[/tex].

Hoped this helped.

[tex]BrainiacUser1357[/tex]