Respuesta :
Answer:
[tex]\huge\boxed{\sf x = -\frac{10y+15}{53}}[/tex]
Step-by-step explanation:
17x - 5(12x - 2y) = 5(4y + 3 + 2x)
Distribute
17x - 60x + 10y = 20y + 15 + 10x
Combine like terms
-43x + 10y = 20y + 15 + 10x
Subtract 10x to both sides
-43x + 10y - 10x = 20y + 15
-53x + 10y = 20y + 15
Subtract 10y to both sides
-53x = 20y + 15 - 10y
-53x = 10y + 15
Divide both sides by -53
[tex]\boxed{x = -\frac{10y+15}{53} }[/tex]
[tex]\rule[225]{225}{2}[/tex]
Hope this helped!
~AH1807
Answer:
- The solution to the equation is [tex]\frac{10y+15}{-53}[/tex].
Work:
- 17x - 5(12x - 2y) = 5(4y + 3 + 2x)
- => 17x - 60x + 10y = 20y + 15 + 10x
- => 7x - 60x + 10y = 20y + 15
- => -53x + 10y = 20y + 15
- => -53x = 10y + 15
- => x = [tex]\frac{10y+15}{-53}[/tex]
Hence, the solution to the equation is [tex]\frac{10y+15}{-53}[/tex].
Hoped this helped.
[tex]BrainiacUser1357[/tex]