A 2-column table with 5 rows. The first column is labeled x with entries negative 2, negative 1, 0, 1, 2. The second column is labeled f of x with entries 21, 10, 5, 6, 13. Which quadratic function is represented by the table? f(x) = 3x2 2x â€" 5 f(x) = 3x2 â€" 2x 5 f(x) = 2x2 3x â€" 5 f(x) = 2x2 â€" 2x 5.

Respuesta :

The quadratic function is [tex]f(x) =3x^2 -2x +5[/tex]

Table

The table entries are given as:

x : -2, -1, 0, 1, 2.

f(x) : 21, 10, 5, 6, 13

Quadratic function

A quadratic function is represented as:

[tex]f(x) = ax^2 + bx + c[/tex]

When x = 0, we have:

[tex]f(0) = a(0)^2 + b(0) + c[/tex]

[tex]f(0) = c[/tex]

From the table,

[tex]f(0) =5[/tex]

So, we have:

[tex]c = 5[/tex]

The quadratic function becomes

[tex]f(x) = ax^2 + bx + 5[/tex]

Also from the function, we have:

[tex]f(-1) = 10[/tex]

So, the function becomes

[tex]a(-1)^2 + b(-1) + 5 = 10[/tex]

[tex]a -b + 5 = 10[/tex]

Subtract 5 from both sides

[tex]a -b = 5[/tex]

Also from the function, we have:

[tex]f(1) = 6[/tex]

So, the function becomes

[tex]a(1)^2 + b(1) + 5 = 6[/tex]

[tex]a + b + 5 = 6[/tex]

Subtract 5 from both sides

[tex]a + b = 1[/tex]

Make a, the subject

[tex]a = 1 - b[/tex]

Substitute 1 - b for a in [tex]a -b = 5[/tex]

[tex](1 - b) - b= 5[/tex]

[tex]1 - b - b= 5[/tex]

[tex]1 - 2b= 5[/tex]

Subtract 1 from both sides

[tex]- 2b= 4[/tex]

Divide both sides by -2

[tex]b= -2[/tex]

Substitute -2 for b in [tex]a = 1 - b[/tex]

[tex]a=1+2[/tex]

[tex]a=3[/tex]

So, the function becomes

[tex]f(x) =3x^2 -2x +5[/tex]

Hence, the quadratic function is [tex]f(x) =3x^2 -2x +5[/tex]

Read more about quadratic functions at:

https://brainly.com/question/11631534