Answer:
The value of x is 6.
Step-by-step explanation:
Question :
The perimeter of an equilateral triangle is 63 inches. If the length lf each side is (4x - 3), find the value of x.
[tex]\begin{gathered}\end{gathered}[/tex]
Solution :
As we know that the formula of perimeter of equilateral triangle is 3a.
Now, according to the question :
[tex]\begin{gathered}\longrightarrow\sf{Perimeter = 3a}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{63 = 3(4x - 3)}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{63 = (4x \times 3 - 3 \times 3)}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{63 = (12x - 9)}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{63 = 12x - 9}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{12x = 63 + 9}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{12x = 72}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{x = \frac{72}{12}}\end{gathered}[/tex]
[tex]\begin{gathered}\longrightarrow\sf{x = 6}\end{gathered}[/tex]
[tex]\begin{gathered} \star{\underline{\boxed{\sf{\red{x = 6}}}}}\end{gathered}[/tex]
Hence, the value of x is 6.
[tex]\rule{300}{2.5}[/tex]