help this poor soul with the homework (•‿•)

find the length of the missing side of the triange shown below. round to the nearest tenth,if nessesary

help this poor soul with the homework find the length of the missing side of the triange shown below round to the nearest tenthif nessesary class=

Respuesta :

Answer:

8 inches

Step-by-step explanation:

Use Pythagorean theorem,

Base² + altitude² = hypotenuse²

15²+ altitude² = 17²

225 + altitude² = 289

           altitude² = 289 - 225 = 64

altitude = √64 = 8 in

Answer:

The altitude of triangle is 8 in.

Step-by-step explanation:

Solution :

Here, we have given that the two sides of triangle are 17 in and 15 in.

Finding the third side of triangle by pythagoras theorem formula :

[tex]{\longrightarrow{\pmb{\sf{{(Base)}^{2} + {(Altitude)}^{2} = {(Hypotenuse)}^{2}}}}}[/tex]

  • [tex]\pink\star[/tex] Base = 15 in
  • [tex]\pink\star[/tex] Hypotenuse = 17 in
  • [tex]\pink\star[/tex] Altitude = ?

Substituting all the given values in the formula to find the third side of triangle :

[tex]\begin{gathered}\qquad{\longrightarrow{\sf{{(Base)}^{2} + {(Altitude)}^{2} = {(Hypotenuse)}^{2}}}}\\\\\quad{\longrightarrow{\sf{{(15)}^{2} + {(Altitude)}^{2} = {(17)}^{2}}}}\\\\\quad{\longrightarrow{\sf{{(15 \times 15)} + {(Altitude)}^{2} = {(17 \times 17)}}}}\\\\\quad{\longrightarrow{\sf{{(225)} + {(Altitude)}^{2} = {(289)}}}}\\\\\quad{\longrightarrow{\sf{{(Altitude)}^{2} = {(289)} - (225)}}}\\\\\quad{\longrightarrow{\sf{{(Altitude)}^{2} = 289 - 225}}}\\\\\quad{\longrightarrow{\sf{{(Altitude)}^{2} = 64}}}\\\\\quad{\longrightarrow{\sf{Altitude = \sqrt{64}}}}\\\\\quad{\longrightarrow{\sf{Altitude = 8 \: in}}}\\\\\quad{\star{\underline{\boxed{\sf{\red{Altitude = 8 \: in}}}}}}\end{gathered}[/tex]

Hence, the altitude of triangle is 8 in.

[tex]\rule{300}{2.5}[/tex]