Respuesta :

Answer:

[tex]s=525[/tex]

Step-by-step explanation:

[tex]s=ut+\frac{1}{2} at^2[/tex]

[tex]s=20*15+\frac{1}{2} *2*15^{2}[/tex]

[tex]s=300+ 225[/tex]

[tex]s=525[/tex]

Answer:

s = 525

Step-by-step explanation:

Here's the required formula to find the displacement (s).

[tex]\longrightarrow{\pmb{\sf{s = ut + \dfrac{1}{2}a{t}^{2}}}}[/tex]

  • ↝ s = distance
  • ↝ u = initial velocity
  • ↝ a = acceleration
  • ↝ t = time taken

Substituting all the given values in the formula to find the displacement (s).

[tex]{\longrightarrow{\sf{s = ut + \dfrac{1}{2}a{t}^{2}}}}[/tex]

[tex]{\longrightarrow{\sf{s = 20 \times 15+ \dfrac{1}{2} \times 2{(15)}^{2}}}}[/tex]

[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 2{(15 \times 15)}}}}[/tex]

[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 2{(225)}}}}[/tex]

[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 2 \times 225}}}[/tex]

[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 450}}}[/tex]

[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{\cancel{2}} \times \cancel{450}}}}[/tex]

[tex]{\longrightarrow{\sf{s = 300 + 225}}}[/tex]

[tex]{\longrightarrow{\sf{s = 525}}}[/tex]

[tex]{\longrightarrow{\underline{\boxed{\pmb{\sf{s = 525}}}}}}[/tex]

Hence, the displacement (s) is 525.

[tex]\rule{300}{2.5}[/tex]