Respuesta :
Answer:
[tex]s=525[/tex]
Step-by-step explanation:
[tex]s=ut+\frac{1}{2} at^2[/tex]
[tex]s=20*15+\frac{1}{2} *2*15^{2}[/tex]
[tex]s=300+ 225[/tex]
[tex]s=525[/tex]
Answer:
s = 525
Step-by-step explanation:
Here's the required formula to find the displacement (s).
[tex]\longrightarrow{\pmb{\sf{s = ut + \dfrac{1}{2}a{t}^{2}}}}[/tex]
- ↝ s = distance
- ↝ u = initial velocity
- ↝ a = acceleration
- ↝ t = time taken
Substituting all the given values in the formula to find the displacement (s).
[tex]{\longrightarrow{\sf{s = ut + \dfrac{1}{2}a{t}^{2}}}}[/tex]
[tex]{\longrightarrow{\sf{s = 20 \times 15+ \dfrac{1}{2} \times 2{(15)}^{2}}}}[/tex]
[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 2{(15 \times 15)}}}}[/tex]
[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 2{(225)}}}}[/tex]
[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 2 \times 225}}}[/tex]
[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{2} \times 450}}}[/tex]
[tex]{\longrightarrow{\sf{s = 300+ \dfrac{1}{\cancel{2}} \times \cancel{450}}}}[/tex]
[tex]{\longrightarrow{\sf{s = 300 + 225}}}[/tex]
[tex]{\longrightarrow{\sf{s = 525}}}[/tex]
[tex]{\longrightarrow{\underline{\boxed{\pmb{\sf{s = 525}}}}}}[/tex]
Hence, the displacement (s) is 525.
[tex]\rule{300}{2.5}[/tex]