Respuesta :

Nayefx

Answer:

see below

Step-by-step explanation:

Part-A:

we want to find the quotient and remainder when 4x²+4x is divided by 2x+1 in other words we want to find the quotient and remainder when:

[tex] \displaystyle \frac{4 {x}^{2} + 4x}{2x + 1} [/tex]

To do so, I would prefer using simple algebra rather than using troublesome polynomial long division. anyway dividing it would yield the form [tex]p(x)+\frac{k}{q(x)}[/tex] where:

  • p(x) is the quotation
  • k is the remainder
  • q(x) is the divisor

Therefore,In order to derive the quotation and remainder, rewrite the numerator which yields:

[tex] \displaystyle \frac{(2x + 1 {)}^{2} - 1}{2x + 1} \\ \\ \frac{(2x + 1 {)}^{2} - 1}{2x + 1} \\ \\ \frac{(2x + 1 {)}^{2} }{2x + 1} + \frac{ - 1}{2x + 1} \\ \\ \boxed{2x + 1 + \frac{ - 1}{2x + 1} }[/tex]

Compering it to the mentioned form, we can consider:

  • 2x+1, The quotient
  • -1, The remainder

Part-B:

we are asked to show that,

[tex] \displaystyle \int _{0} ^{1} \frac{4 {x}^{2} + 4x}{2x + 1} \, dx = 2 - \frac{1}{2} \ln(3) [/tex]

Well,we can start with integrating the indefinite integral and the first step to do so is to decompose the fraction, integrand. As we have already done it in part-a, we can simply skip the steps:

[tex] \displaystyle \implies \int 2x + 1 + \frac{ - 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

utilizing sum integration rule yields:

[tex] \displaystyle \implies \int 2x \, dx+ \int 1 \,dx+ \int \frac{ - 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

apply constant integration rule which yields:

[tex] \displaystyle \implies 2\int x \, dx+ \int 1 \,dx - \int \frac{ 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

recall that,

  • integration of xⁿ is xⁿ+¹/n+1
  • integration of a constant,k is kx

so we derive from utilizing the rules is that,

[tex] \displaystyle \implies 2 \cdot\frac{ {x}^{2} }{2} + x- \int \frac{ 1}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

Now integrating [tex]\frac{1}{2x+1}[/tex] would require u-substitution . In order to perform the substitution, let

  • u=2x+1
  • u'=2 dx

To perform the substitution multiply the integrand and integral by 2 and ½ respectively:

[tex] \displaystyle \implies { {x}^{2} }+ x- \frac{1}{2} \int \frac{ 2}{2x + 1} \, dx \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

perform the substitution:

[tex] \displaystyle \implies x^2+ x- \frac{1}{2} \int \frac{ 1}{u} \, du \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

integrating yields:

[tex] \displaystyle \implies x^2+ x- \frac{1}{2} \ln(u) \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

back-substitute:

[tex] \displaystyle \implies x^2 + x- \frac{1}{2} \ln(2x + 1) \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

To evaluate the define integral , return the limits of integration:

[tex] \displaystyle \implies x^2 \Bigg | _{0} ^{1} + x \Bigg | _ {0}^{1} - \frac{1}{2} \ln(2x + 1)\Bigg | _ {0}^{1} \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) [/tex]

remember fundamental theorem

  • [tex]f(x)\Bigg | _ {a}^{b} = f(b) - f(a)[/tex]

utilize it and simplify which yields:

[tex] \displaystyle \implies 1 + 1 - \frac{1}{2} \ln(3) \stackrel{ ? }{= }2 - \frac{1}{2} \ln(3) \\ \\ 2 - \frac{1}{2} \ln(3)\stackrel{ \checkmark }{= }2 - \frac{1}{2} \ln(3) \\ \\ \rm \rightarrow \: hence,showed[/tex]

and we are done!

The quotient is ( 2 x + 1 )  and the remainder is - 1

What is quotient and reminder?

Quotient is the result gotten from division while remainder refers to leftover after division

(4x² + 4x) / (2x + 1)

Using long division shows that

(2x + 1) (2x + 1) - 1

therefore the division has a

  • quotient of ( 2 x + 1 ) and
  • remainder of - 1

Integration

[tex]\int\limits^1_0 {\frac{4x^{2} + 4x}{2x + 1} } \, dx[/tex]

[tex]\int\limits^1_0 {\frac{4x^{2} + 4x}{2x + 1} } \, dx = \int\limits^1_0 {\frac{(2x + 1)^{2} - 1 }{2x + 1} } \, dx[/tex]

[tex]= \int\limits^1_0 {\frac{(2x + 1)^{2} }{2x + 1} \frac{-1}{2x + 1} } \, dx[/tex]

[tex]\int\limits^1_0 {2x + 1} \, dx + \int\limits^1_0 {\frac{-1}{2x + 1} } \, dx[/tex]

[tex]= \int\limits^1_0 {2x} \, dx + \int\limits^1_0 {1} \, dx -\int\limits^1_0 {\frac{1}{2x +1} } \, dx[/tex]

[tex]= x^{2} \left \{ {{1} \atop {0} \right.+ x\left \{ {{1} \atop {0}} \right. - \frac{1}{2} \int\limits^1_0 {\frac{2}{2x + 1} \, dx[/tex]

applying integration by substitution

[tex]let u = 2x + 1\\dx = 2 du[/tex]

[tex]= x^{2} \left \{ {{1} \atop {0} \right.+ x\left \{ {{1} \atop {0}} \right. - \frac{1}{2} \int\limits^1_0 {\frac{2}{u} \, du[/tex]

[tex]= 1 + 1 - \frac{1}{2} In (u)[/tex][tex]= 2 - \frac{1}{2} In (2x+1)\left \{ {{1} \atop {0}} \right.[/tex]

[tex]= 2 - \frac{1}{2} In (2(1-0)+1)[/tex]

[tex]= 2 - \frac{1}{2} In (3)[/tex]

Therefore proved

[tex]\int\limits^1_0 {\frac{4x^{2} + 4x}{2x + 1} } \, dx = 2 - \frac{1}{2} In 3[/tex]

Read more on Integration by substitution here: https://brainly.com/question/26568631