Respuesta :

Step-by-step explanation:

Given expression:

  • [tex]36a^4 b^{10} - 81a^{16} b^{20}[/tex]

a)

GCF of the terms is:

  • [tex]9a^4b^{10}[/tex]

Factoring:

  • [tex]36a^4 b^{10} - 81a^{16} b^{20}=9a^4b^{10}(4 - 9a^{12}b^{10})[/tex]

b)

Difference of squares:

  • [tex]36a^4 b^{10} - 81a^{16} b^{20}=(6a^2b^5)^2-(9a^8b^{10})^2=[/tex]
  • [tex](6a^2b^5+9a^8b^{10})(6a^2b^5-9a^8b^{10})[/tex]

If you combine both of the methods you will end up with the answer given on the bottom of the question:

  • [tex]9a^4b^{10}(4 - 9a^{12}b^{10})=9a^4b^{10}(2 + 3a^6b^5)(2-3a^6b^5)[/tex]
  • [tex](6a^2b^5+9a^8b^{10})(6a^2b^5-9a^8b^{10})=9a^4b^{10}(2 + 3a^6b^5)(2-3a^6b^5)[/tex]