Respuesta :
The solution of the logarithms equation is [tex]\rm log_5(25x^6\sqrt[3]{x^2+6}})[/tex]
Given
The following expression:
[tex]\rm 2log_5(5x^3)+\dfrac{1}{3}log_5(x^2+6)[/tex]
What properties for Logarithms are used to solve the equation?
The following properties are used in the logarithms equation given below.
[tex]\rm loga+logb=logab\\\\ loga-logb=log(\dfrac{a}{b})\\\\ loga^n=nloga[/tex]
According to the Power of a power property:
- Step 1: Apply the third property for logarithms shown above:
[tex]\rm 2log_5(5x^3)+\dfrac{1}{3}log_5(x^2+6)\\\\\rm log_5(5x^3)^2+\log_5(x^2+6)^{\frac{1}{3}}[/tex]
- Step 2: Apply the Power of a power property:
[tex]\rm log_5(5x^3)^2+\log_5(x^2+6)^{\frac{1}{3}}\\\\log_5(25x^6)+log_5(\sqrt[3]{x^2+6}})[/tex]
- Step 3: Using the property for Radicals;
[tex]\rm log_5(25x^6)+log_5(\sqrt[3]{x^2+6}})\\\\ log_5(25x^6\sqrt[3]{x^2+6}})[/tex]
Hence, the solution of the logarithms equation is [tex]\rm log_5(25x^6\sqrt[3]{x^2+6}})[/tex].
To know more about logarithms properties click the link given below.
https://brainly.com/question/26053315