Answer:
3xy² is your answer.
Step-by-step explanation:
[tex]=\frac{24x^{2} y^{3} }{8xy} \\\\=3x^{2-1} y^{3-1} \\\\=3xy^{2}[/tex]
Answer:
[tex]{24x}^{2} {y}^{3} \: by \: 8xy[/tex]
[tex]\large = \frac{24 {x }^{2} {y}^{3} }{8xy} [/tex]
[tex]\large = \frac{3 \times 8 \times x \times x \times y \times y \times y}{8 \times x \times y} [/tex]
[tex]\large= \frac{3 \times \cancel8 \times \cancel x \times x \times \cancel y \times y \times y}{ \cancel8 \times \cancel x \times \cancel y} [/tex]
[tex] = {3 \times x \times y \times y} [/tex]
[tex] = 3x {y}^{2} [/tex]