Respuesta :

Answer:

[tex]A_{total} = 295\ cm^2[/tex]

Step-by-step explanation:

Step 1:  Determine the area of the bottom rectangle

[tex]A = l * w[/tex]

[tex]A = 20\ cm * 10\ cm[/tex]

[tex]A = 200\ cm^2[/tex]

Step 2:  Determine the area of the top rectangle

[tex]A = l * w[/tex]

[tex]A = (20\ cm - 5\ cm - 5\ cm) * (7\ cm)[/tex]

[tex]A = 10\ cm * 7\ cm[/tex]

[tex]A = 70\ cm^2[/tex]

Step 3:  Determine the area of the triangles

[tex]A = \frac{h * b}{2}[/tex]

[tex]A=\frac{(22\ cm - 10\ cm - 7\ cm)*(\frac{20\ cm - 5\ cm - 5\ cm}{2})}{2}[/tex]

[tex]A=\frac{5\ cm * 5\ cm}{2}[/tex]

[tex]A = 12.5\ cm^2[/tex]

Since we have found the area of one right triangle we need to multiply by 2 to get the area for both of the triangles.

[tex]A = 12.5\ cm^2*2[/tex]

[tex]A = 25\ cm^2[/tex]

Step 4:  Determine the total area

[tex]A_{total} = 200\ cm^2 + 70\ cm^2 + 25\ cm^2[/tex]

[tex]A_{total} = 295\ cm^2[/tex]

Answer: [tex]A_{total} = 295\ cm^2[/tex]