Answer:
[tex]{\purple{\boxed{4.19}}}[/tex] cubic meters.
Step-by-step explanation:
DIAGRAM :
[tex]\setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(-2.3,0)(0,-1)(2.3,0)\qbezier(-2.3,0)(0,1)(2.3,0)\thinlines\qbezier (0,0)(0,0)(0.2,0.3)\qbezier (0.3,0.4)(0.3,0.4)(0.5,0.7)\qbezier (0.6,0.8)(0.6,0.8)(0.8,1.1)\qbezier (0.9,1.2)(0.9,1.2)(1.1,1.5)\qbezier (1.2,1.6)(1.2,1.6)(1.38,1.9)\put(0.2,1){\bf{1\ m}}\end{picture}[/tex]
[tex]\begin{gathered}\end{gathered}[/tex]
SOLUTION :
Here's the required formula to find the volume of sphere :
[tex]\longrightarrow{\pmb{\sf{V_{(Sphere)} = \dfrac{4}{3} \pi {r}^{3}}}}[/tex]
- V = Volume
- π = 3.14
- r = radius
Substituting all the given values in the formula to find the volume of sphere :
[tex]\longrightarrow{\sf{V_{(Sphere)} = \dfrac{4}{3} \pi {r}^{3}}}[/tex]
[tex]\longrightarrow{\sf{V_{(Sphere)} = \dfrac{4}{3} \times 3.14 \times {(1)}^{3}}}[/tex]
[tex]{\longrightarrow{\sf{V_{(Sphere)} = \dfrac{4}{3} \times 3.14 \times {(1 \times 1 \times 1)}}}}[/tex]
[tex]{\longrightarrow{\sf{V_{(Sphere)} = \dfrac{4}{3} \times 3.14 \times {(1 \times 1)}}}}[/tex]
[tex]{\longrightarrow{\sf{V_{(Sphere)} = \dfrac{4}{3} \times 3.14 \times {(1)}}}}[/tex]
[tex]{\longrightarrow{\sf{V_{(Sphere)} = \dfrac{4}{3} \times 3.14 \times 1}}}[/tex]
[tex]{\longrightarrow{\sf{V_{(Sphere)} = \dfrac{4}{3} \times 3.14}}}[/tex]
[tex]{\longrightarrow{\sf{V_{(Sphere)} = \dfrac{12.56}{3}}}}[/tex]
[tex]{\longrightarrow{\sf{V_{(Sphere)} \approx 4.19}}}[/tex]
[tex]\star{\underline{\boxed{\sf{\red{V_{(Sphere)} \approx 4.19 \: {m}^{3}}}}}}[/tex]
Hence, the volume of sphere is 4.19 m³.
[tex]\begin{gathered}\end{gathered}[/tex]
LEARN MORE :
[tex]\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}[/tex]
[tex]\rule{300}{2.5}[/tex]