Respuesta :

[tex]\\ \tt\hookrightarrow f(x)=\dfrac{x^2}{x-6}[/tex]

Find inverse

[tex]\\ \tt\hookrightarrow y=\dfrac{x^2}{x-6}[/tex]

[tex]\\ \tt\hookrightarrow x=\dfrac{x^2+6y}{y}[/tex]

[tex]\\ \tt\hookrightarrow f'(x)=\dfrac{x^2+6x}{x}=x+6[/tex]

Now

[tex]\\ \tt\hookrightarrow x+6=0\implies x=-6[/tex]

Find Horizontal tangency

[tex]\\ \tt\hookrightarrow f(6)=\dfrac{(-6)^2}{-6-6}[/tex]

[tex]\\ \tt\hookrightarrow f(6)=\dfrac{36}{-12}=-3[/tex]

So

  • (x,y) =(-6,-3)