Respuesta :

Given:

[tex]cos(2x)=1-sin(x)[/tex]

Expanding using double angle formula,

[tex]1 - 2 \sin^{2} (x) = 1 - \sin(x) [/tex]

Rearranging into a single equation,

[tex]1 - 2 \sin^{2}(x) - 1 + \sin(x) = 0[/tex]

Combining like terms,

[tex] - 2 \sin^{2} (x) + \sin(x) = 0[/tex]

Now multiplying each term by -1,

[tex]2 \sin^{2} (x) - \sin(x) = 0[/tex]

Factor greatest common factors out,

[tex] \sin(x)(2 \sin(x) - 1) = 0[/tex]

Applying Zero property rule,

[tex] \sin(x) = 0 \: or \: 2 \sin(x) - 1 = 0[/tex]

{ For sin(x) = 0

• Solve the trignometric equation to find a particular solution,

[tex]x = 0 \: or \: x = π[/tex]

[tex] = > x = 2nπ \: or \: x = π + 2nπ[/tex]

• Find the union of the solution sets,

[tex]x = nπ[/tex]}

{ For 2 sin(x) - 1 = 0 ,

Rearrange unknown terms to the left side,

[tex]2 \sin(x) = 1[/tex]

Divide both sides of the equation by the coefficient of variable,

[tex] \sin(x) = \frac{1}{2} [/tex]

• Solve the trignometric equation to find a particular solution,

[tex]x = \frac{π}{6} \: or \: x = \frac{5π}{6} [/tex]

[tex] = > x = \frac{π}{6} + 2nπ \: or \: x = \frac{5π}{6} + 2nπ,n∈Z[/tex]

}

Now finding the union of both sets

[tex]x = nπ \: or \: x = \frac{π}{6} + 2nπ \: or \: x = \frac{5π}{6} + 2nπ,n∈Z[/tex]

Hence, the answer is [tex]x = nπ \: or \: x = \frac{π}{6} + 2nπ \: or \: x = \frac{5π}{6} + 2nπ,n∈Z[/tex]