Answer:
Step-by-step explanation:
Use same power to compare the values
Prove the first part:
- [tex]\sqrt[3]{3}+\sqrt{2} >\sqrt[3]{9}[/tex]
- [tex]\sqrt[6]{3^2}+\sqrt[6]{2^3} >\sqrt[6]{9^2}[/tex]
- [tex]\sqrt[6]{9}+\sqrt[6]{8} >\sqrt[6]{81}[/tex]
- [tex]\sqrt[6]{9}+\sqrt[6]{8}> \sqrt[6]{8}+\sqrt[6]{8}=2\sqrt[6]{8}=\sqrt[6]{8*64} =\sqrt[6]{512} >\sqrt[6]{81}[/tex]
- [tex]512 > 81[/tex]
Prove the second part:
- [tex]\sqrt[3]{9} >\sqrt[4]{13}[/tex]
- [tex]\sqrt[12]{9^4} >\sqrt[12]{13^3}[/tex]
- [tex]\sqrt[12]{6561} >\sqrt[12]{2197}[/tex]
- [tex]6561 > 2197[/tex]