Respuesta :

[tex]\huge\fbox{Answer ☘}[/tex]

we know that ,

• absicca of a point = x - coordinate of that point

• ordinate of a point = y - coordinate of that point

therefore , let the point be A( -6 , y )

also ,

we're given an another point , i.e. ,

B( 1 , 3 )

[tex]distance \: between \: the \: two \: points = \sqrt{74} \\ \\ \sqrt{( x_{2} - x_{1}) {}^{2} \: + ( y_{2} - y_{2}) {}^{2} } = \sqrt{74} \\ \\ \sqrt{(1 - ( - 6)) {}^{2} + (3 - y) {}^{2} } = \sqrt{74} \\ \\ \sqrt{(7) {}^{2} + (9 + y {}^{2} - 6y)} = \sqrt{74} \\ \\ \sqrt{49 + 9 - y {}^{2} - 6y} = \sqrt{74} \\ \\ ✯\:\:\bold\blue{squaring \: both \: sides} \\ \\ 49 + 9 - y {}^{2} - 6y = 74 \\ \\ - y {}^{2} - 6y + 58 = 74 \\ \\ y {}^{2} + 6y - 58 = - 74 \\ \\ y {}^{2} + 6y - 58 + 74 = 0 \\ \\ y {}^{2} + 6y - 16 = 0 \\ \\ y {}^{2} + 8y - 2y - 16 = 0 \\ \\ y(y + 8) - 2(y + 8) = 0 \\ \\ (y + 8) = 0 \: \: and \: \: (y - 2) = 0 \\ \\ y = - 8 \: \: or \: \: y = 2[/tex]

therefore , the ordinate of point A is either ( -8 ) or ( 2 )

hope helpful~