[tex]\bold{\huge{\green{\underline{ Solution }}}}[/tex]
[tex]\bold{\underline{ Given}}[/tex]
[tex]\bold{\underline{To \: Find :- }}[/tex]
[tex]\bold{\underline{Let's \: Begin :- }}[/tex]
The coordinates of G = ( -6 , 5 )
The coordinates of H = ( 2 , - 7 )
According to the distance formula, we get :-
[tex]\purple{\bigstar}\boxed{\sf{Distance\:\:GH=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2\;}}}[/tex]
Subsitute the required values in the above formula
[tex]\sf{ Distance \:GH = √( -6 - 2)² + ( 5 -(-7))²}[/tex]
[tex]\sf{Distance\:GH= √(-8)^2+(5 + 7)^2}[/tex]
[tex]\sf{Distance\:GH=√(-8)^2+(12)^2}[/tex]
[tex]\sf{ Distance \:GH =√64 + 144 }[/tex]
[tex]\sf{ Distance \:GH =√ 208}[/tex]
[tex]\sf{ Distance\: GH = √ 2 × 2 × 2 × 2 × 13}[/tex]
[tex]\sf{ Distance \:GH = 4√13}[/tex]
[tex]\sf{\red{ Hence\: the \: length\:of \: GH \: is \: 4√13 \: units}}[/tex]