Respuesta :

[tex]\bold{\huge{\green{\underline{ Solution }}}}[/tex]

[tex]\bold{\underline{ Given}}[/tex]

  • We have given that the coordinates of the end point G and H are ( -6,5) and ( 2, -7 )

[tex]\bold{\underline{To \: Find :- }}[/tex]

  • We have to find the length of GH

[tex]\bold{\underline{Let's \: Begin :- }}[/tex]

The coordinates of G = ( -6 , 5 )

The coordinates of H = ( 2 , - 7 )

According to the distance formula, we get :-

[tex]\purple{\bigstar}\boxed{\sf{Distance\:\:GH=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2\;}}}[/tex]

  • Here, x1 = -6 , x2 = 2 and y1 = 5 , y2 = -7

Subsitute the required values in the above formula

[tex]\sf{ Distance \:GH = √( -6 - 2)² + ( 5 -(-7))²}[/tex]

[tex]\sf{Distance\:GH= √(-8)^2+(5 + 7)^2}[/tex]

[tex]\sf{Distance\:GH=√(-8)^2+(12)^2}[/tex]

[tex]\sf{ Distance \:GH =√64 + 144 }[/tex]

[tex]\sf{ Distance \:GH =√ 208}[/tex]

[tex]\sf{ Distance\: GH = √ 2 × 2 × 2 × 2 × 13}[/tex]

[tex]\sf{ Distance \:GH = 4√13}[/tex]

[tex]\sf{\red{ Hence\: the \: length\:of \: GH \: is \: 4√13 \: units}}[/tex]