Respuesta :
Answer:
The length of rectangle is 23 cm.
Step-by-step explanation:
DIAGRAM :
[tex]\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large{14\ cm}}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large{14\ cm}}\put(-0.5,-0.4){\bf}\put(-0.5,3.2){\bf}\put(5.3,-0.4){\bf}\put(5.3,3.2){\bf}\end{picture}[/tex]
[tex]\begin{gathered}\end{gathered}[/tex]
SOLUTION :
Here's the required formula to find the length of rectangle :
[tex]{\longrightarrow{\pmb{\sf{A_{(Rectangle)} = l \times b}}}}[/tex]
- A = Area
- l = length
- b = breadth
Substituting all the given values in the formula to find the length of rectangle :
[tex]\begin{gathered}\qquad{\longrightarrow{\sf{A_{(Rectangle)} = l \times b}}}\\\\\qquad{\longrightarrow{\sf{322 = l \times 14}}}\\\\\qquad{\longrightarrow{\sf{322 = 14l}}}\\\\\qquad{\longrightarrow{\sf{l = \dfrac{322}{14}}}}\\\\\qquad{\longrightarrow{\sf{l = \cancel{\dfrac{322}{14}}}}}\\\\\qquad{\longrightarrow{\sf{l = 23 \: cm}}}\\\\\qquad{\star{\underline{\boxed{\sf{ \pink{l = 23 \: cm}}}}}}\end{gathered}[/tex]
Hence, the length of rectangle is 23 cm.
[tex]\begin{gathered}\end{gathered}[/tex]
LEARN MORE :
[tex]\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}[/tex]
[tex]\rule{300}{2.5}[/tex]
Answer:
- Area=322cm²
- Breadth=14cm
- Length=?
We know that,
[tex] \implies\displaystyle{Area_{(rectangle)}} = length(l) \times breadth(b)[/tex]
[tex]\implies\displaystyle{3 {22}^{} } = l \times 14[/tex]
[tex]\implies\displaystyle{ \frac{322}{14} = l }[/tex]
[tex] \implies \displaystyle{23=l}[/tex]
Thus,the value of length=23 cm.