The volume of a rectangular solid is given by the polynomial 3x^4-3x^3-33x^2+54x. If the length of the solid is 3x and the width of the solid is x-2 Find the height?

The volume of a rectangular solid is given by the polynomial 3x43x333x254x If the length of the solid is 3x and the width of the solid is x2 Find the height class=

Respuesta :

Answer:

[tex]\mathsf{height}=x^2+x-9[/tex]

Step-by-step explanation:

Volume of a cuboid = L x w x h

(where L is the length, w is the width and h is the height)

[tex]\implies \mathsf{height=\frac{volume}{width \times length} }[/tex]

Given:

[tex]\mathsf{volume}=3x^4-3x^3-33x^2+54x[/tex]

[tex]\mathsf{width}=x-2[/tex]

[tex]\mathsf{length}=3x[/tex]

[tex]\implies \mathsf{height}=\frac{3x^4-3x^3-33x^2+54x}{3x(x-2)}[/tex]

Factor expression for volume

Factor out common term [tex]3x[/tex]:  [tex]3x(x^3-x^2-11x+18)[/tex]

Factor [tex]x^3-x^2-11x+18[/tex]:  [tex]3x(x-2)(x^2+x-9)[/tex]

[tex]\implies \mathsf{height}=\frac{3x(x-2)(x^2+x-9)}{3x(x-2)}[/tex]

Cancel the common factors [tex]3x(x-2)[/tex]:  

[tex]\implies \mathsf{height}=x^2+x-9[/tex]