Which of the following options represents a logical first step that can be used
1
2
to prove the trigonometric identity
1-sin(x) '1+sin(x) cos? (x)
+
?
O
A.
1+sin(x) +1-sin(x)
1-sin(x)
2
cos? (x)
B.
1
1
1
1-sin(x) 1+sin(x)
1
2
cos(x)
C.
2
1
1-sin(x) cos(x) 1+sin(x)
D.
2
1
1+sin(x) cos'(x) 1-sin(x)

Which of the following options represents a logical first step that can be used 1 2 to prove the trigonometric identity 1sinx 1sinx cos x O A 1sinx 1sinx 1sinx class=

Respuesta :

Answer:

A) [tex]\frac{1+sin(x)+1-sin(x)}{1-sin^2(x)}=\frac{2}{cos^2(x)}[/tex]

Step-by-step explanation:

By combining the fractions on the left side into one fraction, we have:

[tex]\frac{1}{1-sin(x)}+\frac{1}{1+sin(x)}=\frac{2}{cos^2(x)}\\ \\\frac{1+sin(x)+1-sin(x)}{(1-sin(x))(1+sin(x))}=\frac{2}{cos^2(x)}\\\\\frac{1+sin(x)+1-sin(x)}{1-sin^2(x)}=\frac{2}{cos^2(x)}[/tex]

Also, given the Pythagorean Identity [tex]sin^2(x)+cos^2(x)=1[/tex], then [tex]cos^2(x)=1-sin^2(x)[/tex].