Answer:
5 units
Step-by-step explanation:
Use the distance formula [tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2[/tex] where [tex]d[/tex] is the distance between points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex].
Given that [tex](x_1,y_1)\rightarrow(6,4)[/tex] and [tex](x_2,y_2)\rightarrow(10,7)[/tex], then:
[tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}\\\\d=\sqrt{(7-4)^2+(10-6)^2}\\\\d=\sqrt{3^2+4^2}\\\\d=\sqrt{9+16}\\\\d=\sqrt{25}\\\\d=5[/tex]
This means that the distance between (6,4) and (10,7) is 5 units