Respuesta :

Here, we need to solve this problem using Ideal gas law ( PV=nRT).

Where –

  • P = Pressure in atm
  • V = Volume in L
  • n = moles
  • R = Ideal gas law constant
  • T = Temperature in K

Now, according to the question

  • V = 58 L
  • P = 2.2 atm
  • T = 313 K
  • R = 0.0821 atm L/ mol K

Calculation

[tex]\qquad[/tex] [tex]\pink{\twoheadrightarrow\bf PV = nRT}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n = \dfrac{PV}{RT}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n = \dfrac{ 2.2 \: \:\times 58 \: } {0.0821 \times 313}[/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n = \dfrac{ 2.2 \times 58}{0.0821 \times 313} [/tex]

[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n =\dfrac{127.6}{25.7}[/tex]

[tex]\qquad[/tex] [tex]\pink{\twoheadrightarrow\bf n = 4.9656 \: moles }[/tex]

_______________________________________

Given Information ,

  • Volume ,V = 58 L
  • Pressure ,P = 2.2 atm
  • Temperature ,T = 313

We have to find the number of moles .

We use here " Ideal Gas Equation" which is

  • PV = nRT

where

n is number of moles

R is universal gas Constant

T is temperature

P is pressure

V is volume

On substituting the value we get

➣ 2.2 × 58 = n × 0.0821 × 313

➣ 127.6 = n × 25.70

➣ 127.6/25.70 = n

➣ 4.96 = n

➣ 5 ≈ n

So, the number of moles are 5 .