Respuesta :
Here, we need to solve this problem using Ideal gas law ( PV=nRT).
Where –
- P = Pressure in atm
- V = Volume in L
- n = moles
- R = Ideal gas law constant
- T = Temperature in K
Now, according to the question –
- V = 58 L
- P = 2.2 atm
- T = 313 K
- R = 0.0821 atm L/ mol K
Calculation –
[tex]\qquad[/tex] [tex]\pink{\twoheadrightarrow\bf PV = nRT}[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n = \dfrac{PV}{RT}[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n = \dfrac{ 2.2 \: \:\times 58 \: } {0.0821 \times 313}[/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n = \dfrac{ 2.2 \times 58}{0.0821 \times 313} [/tex]
[tex]\qquad[/tex] [tex]\twoheadrightarrow\sf n =\dfrac{127.6}{25.7}[/tex]
[tex]\qquad[/tex] [tex]\pink{\twoheadrightarrow\bf n = 4.9656 \: moles }[/tex]
_______________________________________
Given Information ,
- Volume ,V = 58 L
- Pressure ,P = 2.2 atm
- Temperature ,T = 313
We have to find the number of moles .
We use here " Ideal Gas Equation" which is
- PV = nRT
where
n is number of moles
R is universal gas Constant
T is temperature
P is pressure
V is volume
On substituting the value we get
➣ 2.2 × 58 = n × 0.0821 × 313
➣ 127.6 = n × 25.70
➣ 127.6/25.70 = n
➣ 4.96 = n
➣ 5 ≈ n
So, the number of moles are 5 .