Respuesta :
Answer:
EG = 2 units
Step-by-step explanation:
Given that line q bisects EG at T , then
ET = TG ( substitute values )
[tex]\frac{1}{3}[/tex] x = x - 2 ( multiply through by 3 to clear the fraction )
x = 3x - 6 ( subtract x from both sides )
0 = 2x - 6 ( add 6 to both sides )
6 = 2x ( divide both sides by 2 )
3 = x
Then
ET = [tex]\frac{1}{3}[/tex] x = [tex]\frac{1}{3}[/tex] × 3 = 1
TG = x - 2 = 3 - 2 = 1
Thus
EG = ET + TG = 1 + 1 = 2 units
EG = [tex] \frac{4x}{3} - 2[/tex]
Step-by-step explanation:
( First check the attached image for diagram )
[tex]EG=ET+TG[/tex]
Substituting the given values,
[tex]EG = \frac{1}{3}x + (x - 2)[/tex]
Opening the brackets and multiplying,
[tex]EG = \frac{1 \times x}{3} + x - 2 [/tex]
[tex] = > EG = \frac{x}{3} + x - 2[/tex]
Finding LCM,
[tex] = > EG = ( \frac{x}{3} + \frac{x \times 3}{1 \times 3} ) - 2[/tex]
[tex] = > EG = ( \frac{x}{3} + \frac{3x}{3}) - 2[/tex]
Combining them,
[tex]EG =( \frac{x + 3x}{3}) - 2[/tex]
[tex]EG = \frac{4x}{3} - 2[/tex]
Note:- T is midpoint of EG
because ET = TG
