Respuesta :

The value of x is [tex] \frac{1}{4} [/tex]

Step-by-step explanation:

Given:

[tex] \sqrt{x} + \sqrt{x + 2} = 2[/tex]

Rearranging the radical on left side,

[tex]\sqrt{x + 2} = 2 - \sqrt{x}[/tex]

Power on both sides,

[tex](\sqrt{x + 2})^{2} = (2 - \sqrt{x})^{2} [/tex]

Simplifying the left,

[tex]x + 2 = (2 - \sqrt{x} )^{2}[/tex]

For the RHS equation, use the property of (a-b)² = (a²-2ab+b²),

[tex] = > x + 2 = {2}^{2} - (2 \times 2 \sqrt{x}) + ( \sqrt{x})^{2} [/tex]

Now calculating its powers,

[tex] = > x + 2 = 4 - 4\sqrt{x} + x[/tex]

Now sending -4√x to the LHS (left side), its sign becomes plus (+),

[tex] = > 4 \sqrt{x} = 4 + x - x - 2[/tex]

Now the +x and -x will be cancelled,

[tex] = > 4 \sqrt{x} = 4 - 2[/tex]

[tex] = > 4 \sqrt{x} = 2[/tex]

Bringing 4 to the right side, it becomes the denominator,

[tex] = > \sqrt{x} = \frac{2}{4} [/tex]

[tex] = > \sqrt{x} = \frac{1}{4} [/tex]

Now powering both sides,

[tex] = > ( \sqrt{x})^{2} = ( \frac{1}{2})^{2}[/tex]

[tex] = > x = \frac{1}{4} [/tex]