Respuesta :

Answer:

[tex]y=0.2*4^{x}[/tex]

Step-by-step explanation:

Notice when x increases 1, y is 4 times the previous one, so

the function is like [tex]y=C*4^{x}[/tex]

To determine the constant C, put any pair of (x, y)

Use x = 0, y = 0.2, so

0.2 = [tex]C*4^{0}[/tex] = C * 1 = C

then [tex]y=0.2*4^{x}[/tex]

Answer:

[tex]y=(0.2)4^x[/tex]

Step-by-step explanation:

General form of the exponential function: [tex]y=ab^x[/tex]

Substituting the first point (0, 0.2) into the function:

[tex]\implies 0.2=ab^0[/tex]

As any number to the zero power always gives one, [tex]b^0=1[/tex]

[tex]\implies0.2=a \times 1[/tex]

[tex]\implies a=0.2[/tex]

Therefore, [tex]y=(0.2)b^x[/tex]

Substituting the second point (1, 1.8) into the function:

[tex]\implies0.8=(0.2)b^1[/tex]

[tex]\implies0.8=(0.2)b[/tex]

[tex]\implies b=\frac{0.8}{0.2}[/tex]

[tex]\implies b=4[/tex]

So the final exponential equation is:

[tex]y=(0.2)4^x[/tex]

Checking the equation with the remaining two points:

[tex]x=2 \implies (0.2)4^2=3.2 \ \ \ \checkmark[/tex]

[tex]x=3 \implies (0.2)4^3=12.8 \ \ \ \checkmark[/tex]