The data set represents a progression of hourly temperature measurements. Use a graphing calculator to determine the quadratic regression equation for this data set. X 0 1 2 3 4 5 y 20 16 10 0 -7 -20 a. Y = 0. 795 x squared 3. 796 x 20. 180 c. Y = negative 0. 875 x squared minus 3. 596 x 20. 179 b. Y = negative 0. 795 x squared minus 3. 760 x 20. 180 d. Y = negative 0. 795 x squared minus 3. 796 x 20. 180.

Respuesta :

A regression can be modeled by linear regression, quadratic regression, quartic regression or exponential regression

The quadratic regression equation that models the data is

[tex]\^y = -0.875\^x^2 -3.596\^x +20.179[/tex]

How to determine the regression equation

The table entries are given as:

x: 0,1,2,3,4,5

y: 20,16,10,0,-7,-20

A quadratic regression is represented as:

[tex]\^y = a\^x^2 + b\^x + c[/tex]

Using a graphing calculator to determine the quadratic regression equation, we have the following calculation summary

a = -0.875

b = -3.596

c = 20.179

Hence, the quadratic regression equation is:

[tex]\^y = -0.875\^x^2 -3.596\^x +20.179[/tex]

Read more about regression equations at:

https://brainly.com/question/25987747