Respuesta :

Answer:

base = [tex]x^4 - 3x^3+11x-4[/tex]

Step-by-step explanation:

An isosceles triangle has 2 sides of equal length (a) and base (b)

⇒ perimeter of an isosceles = 2a + b

Given:

  • [tex]\textsf{leg (a)}=3x^4 - 6x-1[/tex]  
  • [tex]\textsf{perimeter}=7x^4 - 3x^3-x-6[/tex]

[tex]\implies \textsf{perimeter}=2a+b[/tex]

[tex]\implies 7x^4 - 3x^3-x-6=2(3x^4 - 6x-1)+b[/tex]

[tex]\implies 7x^4 - 3x^3-x-6=6x^4 - 12x-2+b[/tex]

[tex]\implies x^4 - 3x^3+11x-4=b[/tex]

Therefore, base = [tex]x^4 - 3x^3+11x-4[/tex]

Answer:

Perimeter=sum of sides

  • Let base be y

[tex]\\ \tt\longmapsto 3x^4-6x-1+3x^4-6x-1+y=7x^4-3x^3-x-6[/tex]

[tex]\\ \tt\longmapsto 6x^4-12x-2+y=7x^4-3x^3-x-6[/tex]

[tex]\\ \tt\longmapsto y=x^4-3x^3+11x-4[/tex]