Respuesta :
Answer:
base = [tex]x^4 - 3x^3+11x-4[/tex]
Step-by-step explanation:
An isosceles triangle has 2 sides of equal length (a) and base (b)
⇒ perimeter of an isosceles = 2a + b
Given:
- [tex]\textsf{leg (a)}=3x^4 - 6x-1[/tex]
- [tex]\textsf{perimeter}=7x^4 - 3x^3-x-6[/tex]
[tex]\implies \textsf{perimeter}=2a+b[/tex]
[tex]\implies 7x^4 - 3x^3-x-6=2(3x^4 - 6x-1)+b[/tex]
[tex]\implies 7x^4 - 3x^3-x-6=6x^4 - 12x-2+b[/tex]
[tex]\implies x^4 - 3x^3+11x-4=b[/tex]
Therefore, base = [tex]x^4 - 3x^3+11x-4[/tex]
Answer:
Perimeter=sum of sides
- Let base be y
[tex]\\ \tt\longmapsto 3x^4-6x-1+3x^4-6x-1+y=7x^4-3x^3-x-6[/tex]
[tex]\\ \tt\longmapsto 6x^4-12x-2+y=7x^4-3x^3-x-6[/tex]
[tex]\\ \tt\longmapsto y=x^4-3x^3+11x-4[/tex]