Respuesta :

Answer:

[tex] {x}^{2} + ( \frac{ \sqrt{3} }{2} ) {}^{2} = 1 \\ {x}^{2} = \frac{1}{4} \\ x = \frac{1}{2} \: \: or( \frac{1}{2} ) \\ x > 0 \\ therefore \: \: x = \frac{1}{2} [/tex]

Answer:

[tex]x=-\frac{1}{2}[/tex]

Step-by-step explanation:

equation of a circle:  [tex](x - h)^2+(y-k)^2=r^2[/tex]

where (h, k) = center and r = radius

From inspection, we can see that the center of the circle = (0, 0)

and the radius = 1

[tex]\implies (x - 0)^2+(y-0)^2=1^2[/tex]

[tex]\implies x^2+y^2=1[/tex]

Substitute [tex]y=\frac{\sqrt{3}}{2}[/tex]  into  [tex]x^2+y^2=1[/tex]  and solve for [tex]x[/tex]:

[tex]\implies x^2+(\frac{\sqrt{3}}{2})^2=1[/tex]

[tex]\implies x^2+\frac{3}{4}=1[/tex]

[tex]\implies x^2=\frac{1}{4}[/tex]

[tex]\implies x=\pm \sqrt{\frac{1}{4}}[/tex]

[tex]\implies x=\pm\frac{1}{2}[/tex]

As point P is in quadrant 2, [tex]x[/tex] is negative, so [tex]x=-\frac{1}{2}[/tex]