Answer:
see below
Step-by-step explanation:
1) Use Negative Power Rule: [tex]x^{-a} =\frac{1}{x^{a} }[/tex].
[tex]3.4x*\frac{1}{10^{15} } +8.1*x*10^{-14}[/tex]
2) Use Negative Power Rule: [tex]x^{-a} =\frac{1}{x^{a} }[/tex].
[tex]3.4x*\frac{1}{10^{15} } +8.1*x*\frac{1}{10^{14} }[/tex]
3) Use this rule: [tex]\frac{a}{b} *\frac{c}{d} =\frac{ac}{bd} .[/tex]
[tex]\frac{3.4x*1}{10^{15} }+8.1*x*\frac{1}{10^{14} }[/tex]
4) Simplify [tex]3.4x*1[/tex] to [tex](3.4)x[/tex].
[tex]\frac{3.4x}{10^{15} } +8.1*x*\frac{1}{10^{14} } }[/tex]
5) Use this rule: [tex]\frac{a}{b} *\frac{c}{d} =\frac{ac}{bd} .[/tex]
[tex]\frac{3.4x}{10^{15} } +\frac{8.1*x*1}{10^{14} }[/tex]
6) Simplify [tex]8.1*x*1[/tex] to [tex]8.1(x)[/tex].
[tex]\frac{3.4x}{10^{15} } *\frac{8.1*x}{10^{14} }[/tex]