Respuesta :

Solution:

  • [tex]6^{-2x + 1} = 36[/tex]
  • => [tex](6)6^{-2x} = 36[/tex]
  • => [tex]6^{-2x} = 6[/tex]
  • => [tex]-2x = 1[/tex]
  • => [tex]x = \frac{-1}{2}[/tex]

The solution for this equation is -1/2.

[tex]\qquad \qquad\huge \underline{\boxed{\sf Answer}}[/tex]

Here we go ~

[tex]\qquad \sf  \dashrightarrow \: 6 {}^{ - 2x + 1} = 36[/tex]

[tex]\qquad \sf  \dashrightarrow \: {6}^{ - 2x + 1} = {6}^{2} [/tex]

now, let's apply logarithm on both sides with base (6)

[tex]\qquad \sf  \dashrightarrow \: log_{6}( 6 {}^{ - 2x + 1} ) = log_{6}( {6}^{2} ) [/tex]

According to properties of logarithm, the exponent on the number come out and it's written as a product of exponent times the logarithm.

that is :

[tex] \sf [ log_{a}(b {}^{n} ) = n \times log_{ a }(b) ][/tex]

[tex]\qquad \sf  \dashrightarrow \: ( - 2x + 1) \times log_{6}(6) = 2 \times log_{6}(6) [/tex]

now, as we know : when the base and argument of log are same, then value of log is 1

[tex]\qquad \sf  \dashrightarrow \: - 2x + 1 = 2[/tex]

[tex]\qquad \sf  \dashrightarrow \: - 2x = 2 - 1[/tex]

[tex]\qquad \sf  \dashrightarrow \: - 2x = 1[/tex]

[tex]\qquad \sf  \dashrightarrow \: x = - \dfrac{1}{2} [/tex]