contestada

** HELP ASAP!! **write an equation in slope intercept form of the line that has a slope = -3/2, and passes through the point (-3, 3)

Respuesta :

Given :-

  • Slope of the line is -3/2 .
  • It passes through (-3,3) .

To Find :-

  • The equation of the line .

Solution :-

Here it's given that ,

[tex]\longrightarrow m =\dfrac{-3}{2}[/tex]

And a point that is (-3,3) . We can use the point slope form of the line which is ,

[tex]\longrightarrow y - y_1 = m(x - x_1) [/tex]

Substituting the respective values,

[tex]\longrightarrow y - 3 = \dfrac{-3}{2}\{ x -(-3)\}[/tex]

Simplify,

[tex]\longrightarrow y -3 = \dfrac{-3}{2}( x +3)[/tex]

Simplify by opening the brackets ,

[tex]\longrightarrow y - 3 =\dfrac{-3}{2}x -\dfrac{9}{2} [/tex]

Add 3 on both sides ,

[tex]\longrightarrow y = \dfrac{-3}{2}x -\dfrac{9}{2}+3[/tex]

Add ,

[tex]\longrightarrow \underline{\underline{ y =\dfrac{-3}{2}x -\dfrac{3}{2}}} [/tex]

This is the required answer in slope intercept form .

Based on given conditions,

[tex]m = - \frac{3}{2} [/tex]

Substitute,

[tex]m = - \frac{3}{2} \\ x = - 3 \: \: \: into \\ y = 3[/tex]

So,

[tex]y = mx + b[/tex]

[tex] = > 3 = - \frac{3}{2} \times ( - 3) + b[/tex]

As signs are both minus, write,

[tex] 3 = \frac{3 \times 3}{2} + b[/tex]

[tex] = > 3 = \frac{9}{2} + b[/tex]

Rearranging equations,

[tex] = > - b = \frac{9}{2} - 3[/tex]

Findind LCM as 2,

[tex] = > - b = \frac{9}{2} \times \frac{3 \times 2}{1 \times 2} [/tex]

[tex] = > - b = \frac{9 - 6}{2}[/tex]

[tex] = > - b = \frac{3}{2} [/tex]

[tex] = > b = - \frac{3}{2} [/tex]

Now substitute,

[tex]m = - \frac{ 3}{2} \: \: \: into \\ b = - \frac{3}{2} [/tex]

So,

[tex]y = mx + b[/tex]

[tex] = > y = - \frac{3}{2} \times x + \frac{ - 3}{2} [/tex]

Rewriting in slope intercept form:

(Please check attached image)

Ver imagen Аноним