Answer:
[tex]\sqrt{13}[/tex] units
Step-by-step explanation:
The distance formula is [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] where [tex]d[/tex] is the distance between points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]. Let [tex](x_1,y_1)\rightarrow(5,1)[/tex] and [tex](x_2,y_2)\rightarrow(3,4)[/tex], thus:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\\\d=\sqrt{(3-5)^2+(4-1)^2}\\\\d=\sqrt{(-2)^2+(3)^2}\\\\d=\sqrt{4+9}\\\\d=\sqrt{13}[/tex]
Therefore, the distance between points P(5,1) and Q(3,4) is [tex]\sqrt{13}[/tex] units.