O is the center of the regular dodecagon below. Find its perimeter. Round to the nearest tenth if necessary.

The perimeter of the dodecagon is approx 268.7 units.
There is the following relationship between the apothema ([tex]a[/tex]) and the side length ([tex]l[/tex]):
[tex]\tan \frac{\alpha}{2} = \frac{a}{\frac{l}{2} }[/tex] (1)
Where [tex]\alpha[/tex] is the internal angle, in degrees.
The internal angle ([tex]\alpha[/tex]), in degrees, and perimeter ([tex]p[/tex]) are equal to the respective formulas:
[tex]\alpha = \frac{360}{n}[/tex] (2)
[tex]p = n\cdot l[/tex] (3)
Where [tex]n[/tex] is the number of sides.
By (1) we have an expression for [tex]l[/tex]:
[tex]l = \frac{2\cdot a}{\tan \frac{\alpha}{2} }[/tex]
(3) in (1):
[tex]l = \frac{2\cdot a}{\tan \frac{180}{n} }[/tex] (1b)
(1b) in (3):
[tex]p = n\cdot \left(\frac{2\cdot a}{\tan \frac{180}{n} } \right)[/tex] (3b)
If we know that [tex]a = 3[/tex] and [tex]n = 12[/tex], then the perimeter of the polygon is:
[tex]p = 12\cdot \left[\frac{2\cdot (3)}{\tan \frac{180}{12} } \right][/tex]
[tex]p \approx 268.7[/tex]
The perimeter of the dodecagon is approx 268.7 units. [tex]\blacksquare[/tex]
To learn more on polygons, we kindly invite to check this verified question: https://brainly.com/question/17756657